Refactor main.go to remove slog logger integration and replace with standard log package

This commit is contained in:
2025-08-15 19:08:38 -04:00
parent bd64dd24dc
commit 89b1999048

91
main.go
View File

@ -3,7 +3,7 @@ package main
import (
"flag"
"fmt"
"log/slog"
"log"
"math"
"os"
"time"
@ -22,7 +22,6 @@ var (
hopMs = flag.Int("hop", 50, "Hop size (ms)")
ratioThresh = flag.Float64("ratio", 0.65, "Power ratio threshold for tone detection")
rmsThresh = flag.Float64("rms", 300.0, "Minimum RMS for valid signal")
verbose = flag.Bool("verbose", false, "Enable debug logging")
)
// Goertzel struct for frequency detection
@ -33,7 +32,6 @@ type goertzel struct {
coeff float64
}
// newGoertzel initializes and returns a new instance of the Goertzel algorithm for detecting a specific target frequency.
func newGoertzel(targetHz float64, fs float64, N int) *goertzel {
g := &goertzel{N: N, fs: fs}
g.k = int(0.5 + (float64(g.N)*targetHz)/fs)
@ -42,7 +40,6 @@ func newGoertzel(targetHz float64, fs float64, N int) *goertzel {
return g
}
// Power computes the power of the target frequency in the input signal x using the Goertzel algorithm.
func (g *goertzel) Power(x []float64) float64 {
var s0, s1, s2 float64
for i := 0; i < g.N; i++ {
@ -56,7 +53,6 @@ func (g *goertzel) Power(x []float64) float64 {
return real*real + imag*imag
}
// windowHann applies a Hann window to the input slice x in-place.
func windowHann(x []float64) {
n := float64(len(x))
for i := range x {
@ -64,7 +60,6 @@ func windowHann(x []float64) {
}
}
// pcmToFloat converts a slice of 16-bit PCM audio samples to a slice of float64 values.
func pcmToFloat(buf []int16, N int) []float64 {
out := make([]float64, N)
for i := 0; i < N && i < len(buf); i++ {
@ -73,7 +68,6 @@ func pcmToFloat(buf []int16, N int) []float64 {
return out
}
// rmsPCM calculates the root mean square (RMS) value of a slice of 16-bit PCM audio samples.
func rmsPCM(buf []int16) float64 {
var s float64
for _, v := range buf {
@ -102,16 +96,16 @@ type twoToneDetector struct {
aFreq float64
aAccumMs int
aStart time.Time
aEnd time.Time
waitingB bool
bFreq float64
bAccumMs int
bStart time.Time
bEnd time.Time
gapRemainMs int
logger *slog.Logger
}
// newTwoToneDetector creates and initializes a twoToneDetector instance with the specified parameters.
func newTwoToneDetector(fs, winN, hopN int, ratioThresh, rmsThresh float64, minAms, minBms, gapMaxMs int, logger *slog.Logger) *twoToneDetector {
func newTwoToneDetector(fs, winN, hopN int, ratioThresh, rmsThresh float64, minAms, minBms, gapMaxMs int) *twoToneDetector {
freqs := make([]float64, 0)
for f := 300.0; f <= 3000.0; f += 10.0 {
freqs = append(freqs, f)
@ -131,11 +125,9 @@ func newTwoToneDetector(fs, winN, hopN int, ratioThresh, rmsThresh float64, minA
gapMaxMs: gapMaxMs,
freqs: freqs,
gzBank: gzBank,
logger: logger,
}
}
// stepWindow processes a window of PCM audio samples to detect a two-tone event.
func (d *twoToneDetector) stepWindow(pcms []int16, t0 time.Time) (event string, aFreq, aDur, bFreq, bDur float64, timestamp time.Time) {
xi := pcmToFloat(pcms, d.winN)
windowHann(xi)
@ -150,10 +142,6 @@ func (d *twoToneDetector) stepWindow(pcms []int16, t0 time.Time) (event string,
now := t0
if r < d.rmsThresh {
d.logger.Debug("RMS below threshold, resetting",
"time", now.Format(time.RFC3339),
"rms", fmt.Sprintf("%.2f", r),
"threshold", d.rmsThresh)
d.reset()
return "", 0, 0, 0, 0, time.Time{}
}
@ -170,10 +158,6 @@ func (d *twoToneDetector) stepWindow(pcms []int16, t0 time.Time) (event string,
}
ratio := bestPow / (total + 1e-12)
if ratio < d.ratioThresh {
d.logger.Debug("Ratio below threshold, resetting",
"time", now.Format(time.RFC3339),
"ratio", fmt.Sprintf("%.3f", ratio),
"threshold", d.ratioThresh)
d.reset()
return "", 0, 0, 0, 0, time.Time{}
}
@ -183,30 +167,23 @@ func (d *twoToneDetector) stepWindow(pcms []int16, t0 time.Time) (event string,
// Looking for Tone A
d.inA = true
d.aFreq = freq
d.aAccumMs = int(hopDur.Milliseconds())
d.aStart = now
} else if d.inA && !d.waitingB {
// Confirming Tone A
if math.Abs(freq-d.aFreq) <= 10.0 {
d.aAccumMs += int(hopDur.Milliseconds())
d.aEnd = now.Add(hopDur)
if d.aAccumMs >= d.minAms {
d.inA = false
d.waitingB = true
d.gapRemainMs = d.gapMaxMs
}
} else {
d.logger.Debug("Frequency differs from Tone A, resetting",
"time", now.Format(time.RFC3339),
"freq", fmt.Sprintf("%.1f", freq),
"tone_a_freq", fmt.Sprintf("%.1f", d.aFreq))
d.reset()
}
} else if d.waitingB {
d.gapRemainMs -= int(hopDur.Milliseconds())
if d.gapRemainMs <= 0 {
d.logger.Debug("Gap exceeded max duration, resetting",
"time", now.Format(time.RFC3339),
"gap_max_ms", d.gapMaxMs)
d.reset()
} else if math.Abs(freq-d.aFreq) > 10.0 {
// Check for Tone B
@ -214,91 +191,66 @@ func (d *twoToneDetector) stepWindow(pcms []int16, t0 time.Time) (event string,
d.bFreq = freq
d.bStart = now
} else if math.Abs(freq-d.bFreq) > 10.0 {
d.logger.Debug("Frequency differs from Tone B, resetting B",
"time", now.Format(time.RFC3339),
"freq", fmt.Sprintf("%.1f", freq),
"tone_b_freq", fmt.Sprintf("%.1f", d.bFreq))
d.bFreq = freq
d.bAccumMs = 0
d.bStart = now
}
d.bAccumMs += int(hopDur.Milliseconds())
d.bEnd = now.Add(hopDur)
if d.bAccumMs >= d.minBms {
event = "TWO_TONE_DETECTED"
d.logger.Info("Two-tone detected",
"time", now.Format(time.RFC3339),
"tone_a_freq", fmt.Sprintf("%.1f", d.aFreq),
"tone_a_duration_ms", d.aAccumMs,
"tone_b_freq", fmt.Sprintf("%.1f", d.bFreq),
"tone_b_duration_ms", d.bAccumMs)
return event, d.aFreq, float64(d.aAccumMs), d.bFreq, float64(d.bAccumMs), now
aDurMs := float64(d.aEnd.Sub(d.aStart).Milliseconds())
bDurMs := float64(d.bEnd.Sub(d.bStart).Milliseconds())
return event, d.aFreq, aDurMs, d.bFreq, bDurMs, now
}
}
}
return "", 0, 0, 0, 0, time.Time{}
}
// reset reinitializes all internal state fields of the twoToneDetector.
func (d *twoToneDetector) reset() {
d.inA = false
d.aFreq = 0
d.aAccumMs = 0
d.aStart = time.Time{}
d.aEnd = time.Time{}
d.waitingB = false
d.bFreq = 0
d.bAccumMs = 0
d.bStart = time.Time{}
d.bEnd = time.Time{}
d.gapRemainMs = 0
}
func main() {
flag.Parse()
// Initialize slog logger
logLevel := &slog.LevelVar{}
logLevel.Set(slog.LevelInfo)
if *verbose {
logLevel.Set(slog.LevelDebug)
}
logger := slog.New(slog.NewJSONHandler(os.Stderr, &slog.HandlerOptions{
Level: logLevel,
}))
if *wavFile == "" {
logger.Error("WAV file path is required", "flag", "-wav")
os.Exit(1)
log.Fatal("WAV file path is required (use -wav flag)")
}
file, err := os.Open(*wavFile)
if err != nil {
logger.Error("Failed to open WAV file", "error", err)
os.Exit(1)
log.Fatalf("Failed to open WAV file: %v", err)
}
defer file.Close()
decoder := wav.NewDecoder(file)
if !decoder.IsValidFile() {
logger.Error("Invalid WAV file")
os.Exit(1)
log.Fatal("Invalid WAV file")
}
if decoder.Format().SampleRate != 8000 || decoder.Format().NumChannels != 1 {
logger.Error("WAV file must be mono 8kHz",
"sample_rate", decoder.Format().SampleRate,
"channels", decoder.Format().NumChannels)
os.Exit(1)
log.Fatalf("WAV file must be mono 8kHz, got %d Hz, %d channels",
decoder.Format().SampleRate, decoder.Format().NumChannels)
}
const fs = 8000
winN := int(float64(fs) * float64(*winMs) / 1000.0)
hopN := int(float64(fs) * float64(*hopMs) / 1000.0)
if winN <= 0 || hopN <= 0 || hopN > winN {
logger.Error("Invalid window/hop parameters",
"winN", winN,
"hopN", hopN)
os.Exit(1)
log.Fatalf("Invalid window/hop: winN=%d, hopN=%d", winN, hopN)
}
det := newTwoToneDetector(fs, winN, hopN, *ratioThresh, *rmsThresh, *minAms, *minBms, *gapMaxMs, logger)
det := newTwoToneDetector(fs, winN, hopN, *ratioThresh, *rmsThresh, *minAms, *minBms, *gapMaxMs)
buf := &audio.IntBuffer{
Format: &audio.Format{SampleRate: fs, NumChannels: 1},
@ -308,13 +260,11 @@ func main() {
sampleCount := 0
startTime := time.Now()
logger.Info("Processing WAV file")
log.Println("Processing WAV file...")
for {
n, err := decoder.PCMBuffer(buf)
if err != nil || n == 0 || len(buf.Data) == 0 {
logger.Info("Finished processing",
"samples", sampleCount,
"duration_sec", fmt.Sprintf("%.2f", float64(sampleCount)/float64(fs)))
log.Printf("Finished processing %d samples (%.2f seconds)", sampleCount, float64(sampleCount)/float64(fs))
break
}
@ -338,7 +288,6 @@ func main() {
}
}
// min returns the smaller of two integer values a and b.
func min(a, b int) int {
if a < b {
return a